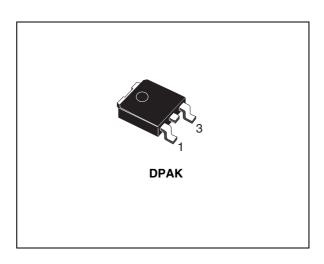


STD45NF75

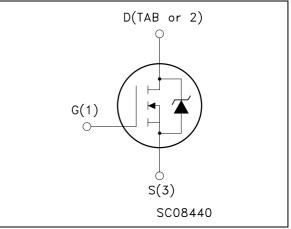
N-channel 75V - 0.018Ω - 40A - DPAK STripFET™ II Power MOSFET

General features

Туре	V _{DSS}	R _{DS(on)}	I _D
STD45NF75	75V	<0.024Ω	40A ⁽¹⁾


- 1. Current limited by package
- 100% avalanche tested
- Gate charge minimized

Description


This Power MOSFET is the latest development of STMicroelectronics unique "Single Feature Size™" strip-based process. The resulting transistor shows extremely high packing density for low on-resistance, rugged avalanche characteristics and less critical alignment steps therefore a remarkable manufacturing reproducibility.

Applications

Switching application

Internal schematic diagram

Order codes

Part number	Marking	Package	Packaging
STD45NF75T4	D45NF75	DPAK	Tape & reel

Contents

1	Electrical ratings
2	Electrical characteristics 4 2.1 Electrical characteristics (curves) 6
3	Spice thermal model 10
4	Test circuit
5	Package mechanical data 12
6	Packing mechanical data 14
7	Revision history

1

Electrical ratings

Table 1. Absolute maxim	num ratings
-------------------------	-------------

Symbol	Parameter	Value	Unit	
V _{DS}	Drain-source voltage ($V_{GS} = 0$)	75	V	
V _{DGR}	Drain-gate voltage ($R_{GS} = 20 \text{ k}\Omega$)	75	V	
V _{GS}	Gate- source voltage	± 20	V	
Ι _D ⁽¹⁾	Drain current (continuous) at $T_C = 25^{\circ}C$	40	Α	
۱ _D	Drain current (continuous) at T _C = 100°C	30	Α	
I _{DM} ⁽²⁾	Drain current (pulsed)	160	А	
P _{tot}	Total dissipation at $T_{C} = 25^{\circ}C$	100	W	
	Derating Factor	0.67	W/°C	
dv/dt ⁽³⁾	Peak diode recovery voltage slope	20	V/ns	
E _{AS} ⁽⁴⁾	Single pulse avalanche energy	500	mJ	
T _{stg}	Storage temperature	-55 to 175	°C	
Тj	Max. operating junction temperature	-5510175		

1. Current limited by package

2. Pulse width limited by safe operating area.

3. I_{SD} \leq 0A, di/dt \leq 00A/µs, V_{DD} \leq V_{(BR)DSS}, T_j \leq T_{JMAX}

4. Starting $T_j = 25 \text{ °C}$, $I_D = 20A$, $V_{DD} = 40V$

	Table 2	Ther	mal data
--	---------	------	----------

Rthj-case	Thermal resistance junction-case max	1.5	°C/W
Rthj-pcb	Thermal resistance junction-pcb max	see Figure 15. and Figure 16.	°C/W
TJ	Maximum lead temperature for soldering purpose ⁽¹⁾	275	°C

1. for 10 sec. 1.6 mm from case

2 Electrical characteristics

(T_{CASE}=25°C unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	I _D = 250μA, V _{GS} =0	75			V
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V_{DS} = max rating V_{DS} = max rating, T_{C} = 125°C			1 10	μΑ μΑ
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	$V_{GS} = \pm 20V$			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_D = 250 \mu A$	2		4	V
R _{DS(on)}	Static drain-source on resistance	$V_{GS} = 10V, I_D = 20A$		0.018	0.024	Ω

Table 3. On/off states

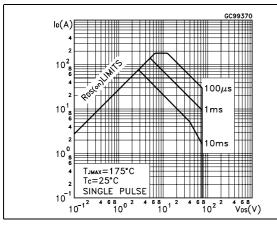
Table 4. Dynamic

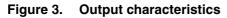
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
9 _{fs} ⁽¹⁾	Forward transconductance	$V_{DS} = 25V_{,}I_{D} = 20A$		50		S
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	V _{DS} = 25V, f = 1MHz, V _{GS} = 0		1760 360 140		pF pF pF
t _{d(on)} t _r t _{d(off)} t _f	Turn-on delay time Rise time Turn-off delay time Fall time	$V_{DD} = 37V, I_D = 20A$ $R_G = 4.7\Omega V_{GS} = 10V$ (see <i>Figure 19</i>)		15 40 55 12		ns ns ns ns
Q _g Q _{gs} Q _{gd}	Total gate charge Gate-source charge Gate-drain charge	$V_{DD} = 60V, I_D = 40A,$ $V_{GS} = 10V, R_G = 4.7\Omega$ (see <i>Figure 20</i>)		60 13 23	80	nC nC nC

1. Pulsed: Pulse duration = 300 μ s, duty cycle 1.5%.

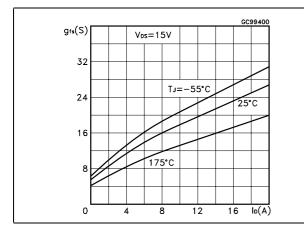
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM} ⁽¹⁾	Source-drain current Source-drain current (pulsed)				40 160	A A
V _{SD} ⁽²⁾	Forward on voltage	$I_{SD} = 40A, V_{GS} = 0$			1.5	V
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	$I_{SD} = 40A, di/dt = 100A/\mu s,$ $V_{DD} = 30V, T_j = 150^{\circ}C$ (see <i>Figure 21</i>)		120 410 7.5		ns nC A

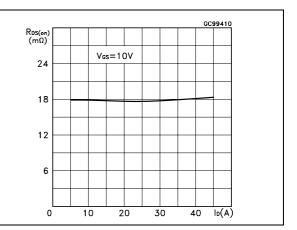
Table 5.Source drain diode

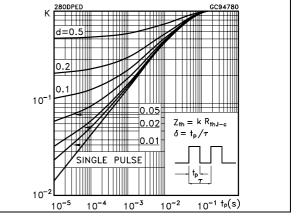

1. Pulse width limited by safe operating area.

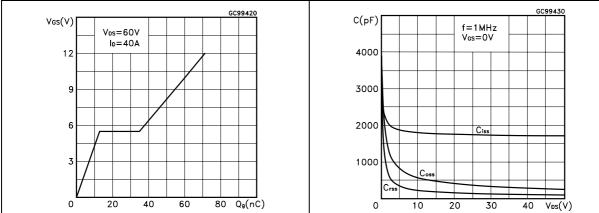

2. Pulsed: Pulse duration = 300 μ s, duty cycle 1.5%

2.1 Electrical characteristics (curves)


Figure 1. Safe operating area






57

Thermal impedance

Figure 4. Transfer characteristics

Figure 2.

Gate charge vs. gate-source voltage Figure 8. Figure 7. **Capacitance variations**

Figure 9. Normalized gate threshold voltage vs. temperature

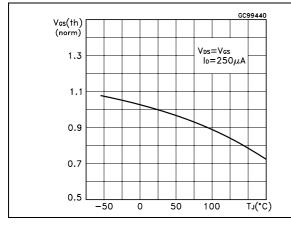


Figure 11. Source-drain diode forward characteristics

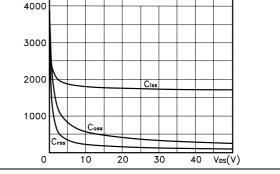


Figure 10. Normalized on resistance vs. temperature

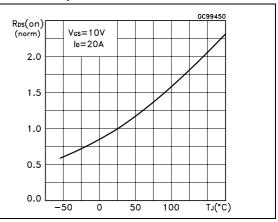
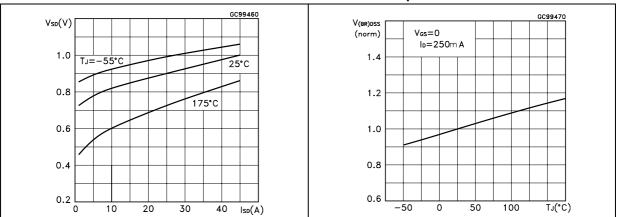



Figure 12. Normalized breakdown voltage vs. temperature

Figure 13. Power derating vs. Tj

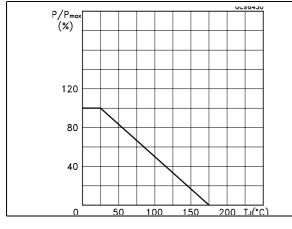
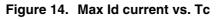



Figure 15. Thermal resistance Rthj-a vs. pcb copper area

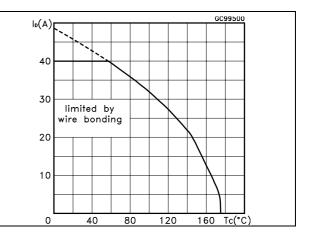
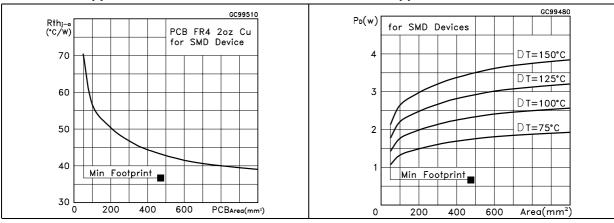



Figure 16. Max power dissipation vs. pcb copper area

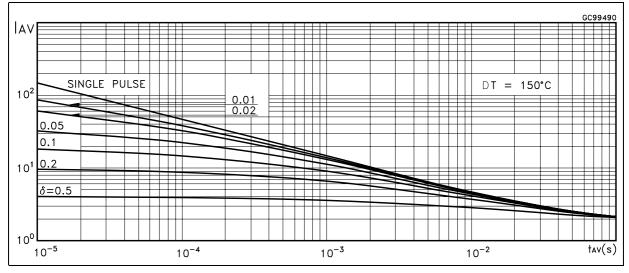


Figure 17. Allowable lav vs. time in avalanche

The previous curve gives the safe operating area for unclamped inductive loads, single pulse or repetitive, under the following conditions:

$$\begin{split} &\mathsf{P}_{\mathsf{D}(\mathsf{AVE})} = 0.5 \,\,^{*} \, (1.3 \,\,^{*} \, \mathsf{B}_{\mathsf{VDSS}} \,\,^{*} \, \mathsf{I}_{\mathsf{AV}}) \\ &\mathsf{E}_{\mathsf{AS}(\mathsf{AR})} = \mathsf{P}_{\mathsf{D}(\mathsf{AVE})} \,\,^{*} \, \mathsf{t}_{\mathsf{AV}} \end{split}$$

Where:

IAV is the allowable current in avalanche

P_{D(AVE)} is the average power dissipation in avalanche (single pulse)

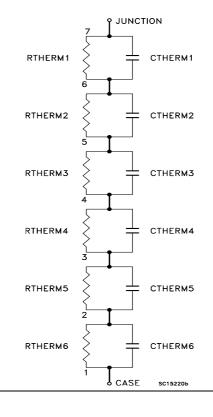
 t_{AV} is the time in avalanche

To de rate above 25 °C, at fixed I_{AV} , the following equation must be applied:

 $I_{AV} = 2 * (T_{jmax} - T_{CASE}) / (1.3 * B_{VDSS} * Z_{th})$

Where:

 Z_{th} = K * R_{th} is the value coming from normalized thermal response at fixed pulse width equal to T_{AV}


57

3 Spice thermal model

Table 6.Spice parameter

Parameter	Node	Value
CTHERM1	7 - 6	6 * 10 ⁻⁴
CTHERM2	6 - 5	8 * 10 ⁻³
CTHERM3	5 - 4	2 * 10 ⁻²
CTHERM4	4 - 3	6 * 10 ⁻²
CTHERM5	3 - 2	9.65 * 10 ⁻²
CTHERM6	2 - 1	6 * 10 ⁻¹
RTHERM1	7 - 6	0.045
RTHERM2	6 - 5	0.105
RTHERM3	5 - 4	0.150
RTHERM4	4 - 3	0.225
RTHERM5	3 - 2	0.375
RTHERM6	2 - 1	0.600

Figure 18.

4 Test circuit

Figure 19. Switching times test circuit for resistive load

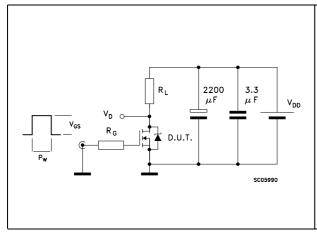
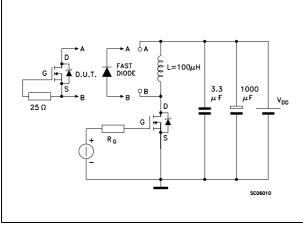



Figure 21. Test circuit for inductive load switching and diode recovery times

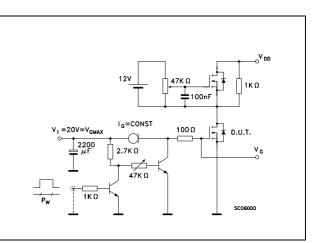


Figure 20. Gate charge test circuit

Figure 22. Unclamped Inductive load test circuit

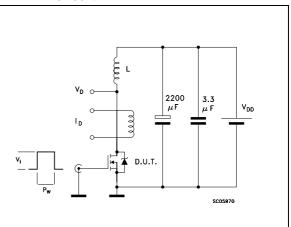
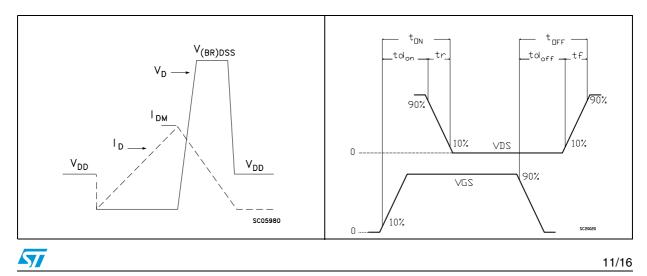



Figure 24. Switching time waveform

5 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com

DIM.		mm.			inch		
DIM.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.	
А	2.2		2.4	0.086		0.094	
A1	0.9		1.1	0.035		0.043	
A2	0.03		0.23	0.001		0.009	
В	0.64		0.9	0.025		0.035	
b4	5.2		5.4	0.204		0.212	
С	0.45		0.6	0.017		0.023	
C2	0.48		0.6	0.019		0.023	
D	6		6.2	0.236		0.244	
D1		5.1			0.200		
E	6.4		6.6	0.252		0.260	
E1		4.7			0.185		
е		2.28			0.090		
e1	4.4		4.6	0.173		0.181	
Н	9.35		10.1	0.368		0.397	
L	1			0.039			
(L1)		2.8			0.110		
L2		0.8			0.031		
L4	0.6		1	0.023		0.039	
R		0.2			0.008		
V2	0°		8°	0°		8°	
	 H						

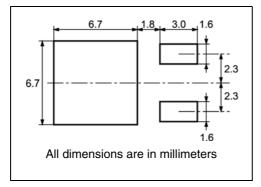
SEATING PLANE

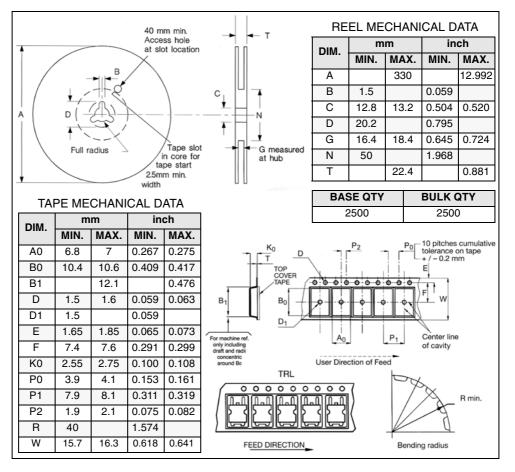
<u>A2</u>

_ V2 0,25 GAUGE PLANE

(11)

DPAK MECHANICAL DATA




0068772-F

57

6 Packing mechanical data

DPAK FOOTPRINT

TAPE AND REEL SHIPMENT

7 Revision history

Date	Revision	Changes
22-Jun-2004	1	Preliminary version
09-Sep-2004	2	Complete version
11-Jul-2006	3	New template, no content change
20-Feb-2007	4	Typo mistake on page 1

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2007 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

